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Causal inference is a critical consideration across a broad range of domains in science, technology, engineering, and medicine, as

it is the field of study that seeks to determine how manipulating one variable causes a change in an outcome of interest. The

inference of causality presents significant challenges, requiring specific assumptions to identify causal relationships accurately.

Yet, these assumptions are often compromised in practice, leading to unreliable conclusions about treatment effects. My research

focuses on creating statistically valid causal inference methods designed for situations where typical assumptions fail. I aim to

devise innovative solutions to overcome the shortcomings of existing techniques, tackling the intricate real-world problems faced

in public policy, clinical trials, and social and marketing sciences.

Causal Inference with Violated Assumptions

Three significant sources of complications in causal inference that are increasingly of interest are interference among individuals,

nonadherence/noncompliance of individuals to their assigned treatments, and unintended missing outcomes of individuals. In-

terference exists if the outcome of an individual depends not only on its assigned treatment, but also on the assigned treatments

for other units. It arises when limited controls are placed on the interactions of individuals with one another during the course

of an experiment. Treatment nonadherence frequently occurs in human subject experiments, as it can be unethical to force an

individual to take their assigned treatment. Clinical trials, in particular, typically have subjects that do not adhere to their

assigned treatments due to adverse side effects or intercurrent events. Finally, missing values commonly occur in clinical studies.

For example, some patients may drop out of the study due to the side effects of the treatment. Failing to account for interference,

nonadherence, and missing outcomes will generally yield unstable and biased inferences on treatment effects, even in randomized

experiments, which are the gold standard for drawing causal inferences.

In my first project, we introduced a novel Bayesian method that tackles all three challenges simultaneously (Ohnishi and

Sabbaghi, 2022). In contrast to existing methods that invoke strong structural assumptions to identify causal effects, our

Bayesian approach uses flexible distributional models that can accommodate these complexities, ensuring that causal effects are

identifiable. We demonstrated the efficacy of our method through the analyses of real-world data from India’s National Health

Insurance Program, successfully uncovering more definitive evidence of spillover and overall effects of the intervention that were

not recognized in the previous analyses.

My subsequent research (Ohnishi et al., 2023) further addresses one of the limitations of Ohnishi and Sabbaghi (2022): a

set of assumptions about interference structures that may be too restrictive in some practical settings. We introduced a concept

of the “degree of interference” (DoI), a latent variable capturing the interference structure. This concept allows for handling

arbitrary, unknown interference structures to facilitate inference on causal estimands. Additionally, we developed a novel Bayesian

semiparametric method, flexible for handling arbitrary interference effects, with an efficient MCMC sampler to draw inferences

under our framework. It also segregates units into distinct clusters according to the interference effects they experience, facilitating

interpretable group-based analysis. We illustrate the DoI concept and properties of our Bayesian methodology via extensive

simulation studies and a real-life case study from additive manufacturing for which interference is a critical concern in achieving

geometric accuracy control. Ultimately, our framework enables us to infer causal effects without strong structural assumptions

on interference.

While randomized experiments offer a solid foundation for valid causal analysis, people are also interested in conducting

causal inference using observational data due to the cost and difficulty of randomized experiments and the wide availability of

observational data. Nonetheless, using observational data to infer causality requires us to rely on additional assumptions. A

central assumption is that of ignorability, which posits that the treatment is randomly assigned based on the variables (covariates)

included in the dataset. While crucial, this assumption is often debatable, especially when treatments are assigned sequentially to

optimize future outcomes. For instance, in digital marketing, assessing the effectiveness of targeted emails requires consideration of

sequential selection bias—where earlier interactions impact subsequent promotions—and noncompliance, such as when recipients

fail to open an email. Marketers typically adjust subsequent promotions based on responses to earlier ones and speculate on how

customers might have reacted to alternative past promotions. This speculative behavior introduces latent confounders, which must

be carefully addressed to prevent biased conclusions. This type of sequential treatment can also be seen as temporal interference,

where past assigned treatments affect future outcomes. However, these latent sequential confounders are not adequately addressed

by existing methods.

We investigate these issues by studying sequences of promotional emails sent by a US retailer (Ohnishi et al., 2023). We

developed a novel Bayesian approach for causal inference from longitudinal observational data that accommodates noncompliance

and latent sequential confounding. Our methodology allows us to 1) estimate the average treatment effect of specific email

strategies, 2) evaluate the relative effectiveness of these strategies considering varying compliance behaviors, and 3) infer optimal

strategies for distinct customer segments. Our research uncovered, among other findings, that certain promotional emails are

particularly successful in maintaining engagement among customers who are frequently targeted. Additionally, we observed that

individuals who regularly open their emails tend to be less responsive to promotional content.

Future Directions: Causal Inference under Spatiotemporal Interference

While a growing body of research has focused on causal inference in the presence of spatial interference or temporal interfer-

ence—where units influence each other geographically or temporally—a less explored dimension is spatiotemporal interference,

where there is interference in both time and location. For example, if you vaccinate a group of individuals against a disease, this

can reduce disease transmission not only within the treated group but potentially in neighboring regions as well due to reduced
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spread. Similarly, a policy intervention in an economic system may influence not only the present economic conditions but

also future conditions because of dynamic interactions. This type of spatiotemporal interference is prevalent in various applied

settings, yet there is a noticeable gap in research on how to conduct causal inference in these contexts.

One primary research direction is developing a statistical test to discern spatiotemporal interference effects from longitudinal

data. While there is existing literature on detecting spatial interference, the multifaceted nature of spatiotemporal interference

necessitates a more advanced methodology. A secondary direction involves defining causal estimands that remain robust under

spatiotemporal interference. Subsequently, I aim to develop both design-based and model-based inferential strategies to deduce

spatiotemporal spillover effects. Potential avenues for the model-based approach might encompass extending our Degree of

Interference (DoI) framework to account for temporal interference, implying a time-varying DoI that addresses both temporal

and spatial interference.

Causal Inference on Privatized Data

In the era of digital expansion, the secure handling of sensitive data poses an intricate challenge that significantly influences

research, policy-making, and technological innovation. As the collection of sensitive data becomes more widespread across

academic, governmental, and corporate sectors, the threat to individual privacy grows increasingly acute. Despite these risks,

such data is essential for informed and evidence-based decision-making processes. Addressing the complex balance between

making data accessible and safeguarding private information requires the development of sophisticated methods for analysis

and reporting, which must include stringent privacy protections. Currently, the gold standard for maintaining this balance is

Differential Privacy (DP). DP offers mathematically provable privacy protection against arbitrary privacy breaches while enabling

the secure sharing of summary statistics and synthetic data, ensuring privacy without hindering data utility. This probabilistic

guarantee is often achieved by adding random noise to the data. One DP model is local differential privacy (LDP). In this model,

people do not directly provide their data to the data curator; instead, users apply the DP mechanism to their data locally before

sending it to the curator. LDP is a preferable model if the data curators are not trusted by users. The LDP framework is

receiving growing attention as major organizations, such as Google and Apple, integrate it to enhance their privacy protections.

On the other hand, randomized experiments, where individuals are randomly allocated to treatment or control groups with

a specified probability, set the benchmark for conducting valid causal inference. Such experiments are widespread across various

fields in science and business, including clinical trials and A/B testing in marketing strategies. Nonetheless, inferring causal

relationships from privatized data presents challenges, even within the framework of randomized experiments. While the added

random noise helps safeguard individuals’ privacy, the noise introduced to protect privacy can obscure actual data patterns,

potentially leading to biased conclusions. This issue becomes even more pronounced in the LDP method, where each data point

is individually privatized before it is aggregated. Therefore, when trying to understand cause-and-effect relationships using this

protected data, researchers must exercise extra caution to ensure their interpretations remain accurate and unbiased.

In our study (Ohnishi and Awan, 2023), we presented how to perform statistically valid causal inferences on locally privatized

data in a variety of different privacy scenarios. A fundamental problem we tackled was quantifying and correcting the bias of

naive frequentist approaches and quantifying the error of our estimators. We also constructed novel LDP estimators, which

we prove are minimax optimal. To faciliate uncertainty quantification of the privatized estimators, we develop both confidence

intervals as well as a Bayesian methodology along with an efficient sampler designed for locally privatized data.

Future Directions: Causal Inference on Privatized Data in Observational Studies

Our methodological work for the privacy setting has primarily concentrated on randomized experiments, but the interest in causal

inference from observational data is also significant. For example, technological companies often accumulate extensive user data

in non-experimental settings and are keen to derive causal insights from this data reservoir. Consequently, a natural extension of

our research is to adapt our methodology for use in observational studies.

Two commonly used estimators in observational studies are the inverse probability weighting (IPW) estimator and the doubly

robust (DR) estimator. Specifically, the DR estimator combines outcome modeling and treatment assignment modeling. Notably,

it is well-known that the DR estimator possesses several desirable statistical properties. One such property is its greater efficiency

compared to the IPW estimator in standard, non-private settings. However, in private settings, this is not always the case. This

difference arises because the DR estimator requires privacy costs for inferring both outcome and treatment assignment models,

potentially compromising efficiency. In contrast, the IPW estimator only requires the treatment assignment model. The goal

of this project is to thoroughly understand the trade-off between privacy costs and efficiency. This presents not only practical

relevance but also unique theoretical challenges in quantifying efficiency in terms of privacy budgets.
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